
Thermomechanical Measurements for 
Energy Systems (MENR)

Measurements for Mechanical Systems 
and Production  (MMER)

Zaccaria (Rino ) Del PreteA.Y.  2015-16

Lesson 11



VIBRATION measurement techniques …

Engines (M) that produce mechanical energy are 
always coupled with an Operating Machine (U) 
through a shaft, that transfers the energy by an 
alternating (v) or a rotating (ω) movement.

Relative movements of mechanical parts of 
engines and operating machines always produce 
spurious vibration and audible noise.

Vibrations are a “mechanical energy waste”, are 
troublesome for operators and harmful to 
machines, because of the “mechanical fatigue 
effects” they cause ! 

example of an agricultural tractor engine:



VIBRATION measurement techniques …

Vibrations are harmonic motions of mechanical parts of a machine which, sometimes, can be seen by eye and 
always, can be heard as noise …

Therefore, vibrations are characterized by waveforms which have 
their specific amplitude and frequency !

Every periodic waveform can be described by a Fourier series :

therefore, to study vibrations we can refer to its component waves
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As for a mechanical system in vibration, the momentum 
remains constant, these three simple relations 

indicate that it is preferable to measure displacements at low 
frequencies and to measure acceleration at high-frequency !!
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VIBRATION measurement techniques …

The main problem for vibration measurements
is finding a fixed point that can be considered 
as reference point for all the points or elements 
of the “vibrating machine”  !

Sometimes, this can be done placing a telescope instrument 
equipped with a graduated aim quite far form the vibrating 
machine !
However, most of the times in industrial plants, machines 
are placed indoor in a shed !
The fixed point, therefore, can NOT BE FAR from the 
vibrating machine !

flickering



VIBRATION measurement techniques …

Seismic transducers utilize an “internal fixed reference 
point” and are rigidly attached to the engine  !

How are these sensors actually working … ?A seismic mass m is placed inside the transducer, 
connected to the case by means of a spring k and 
a viscous damper c …



VIBRATION measurement techniques …

We would like to measure the periodic displacement 
u(t) = U0 senωt of the machine M, indicated in the 
figure on the imaginary absolute (fixed) scale  !

However, the transducer output is the displacement 
δ(t) of the inner seismic mass «m» with respect to 
the sensor external case, indicated in the figure on 
the real relative (moving) scale …

We can express the motion of the seismic mass m by means of the theorem of relative motion

)()()( ttutx 
• x(t) absolute displacement (measured in an inertial reference frame)
• u(t) dragging displacement (of the relative reference frame) 
• δ(t) relative displacement (measured in the relative reference frame)

u(t)=U0senωt



VIBRATION measurement techniques …

Vibrations are definitely a dynamic phenomenon so, we will study first the dynamic response of the seismic 
transducer: that means finding the gain δ0 /U0 with respect to the frequency ω of the displacement u(t) …

Seismic transducers are clearly second order instruments, so the equation for the dynamic response is : 
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m because inertial forces are always referred to the inertial reference frame (x), while 

elastic and damping forces here are referred to the relative moving frame (δ) made 
of the sensor case !
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the “external force term” in the equation of this 
transducer is proportional to the relative 
displacement u(t) … that is F(t) = mω2U0 senωt

Frequency response is much similar to any other second order instrument :
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VIBRATION measurement techniques …

where : and for the amplitude δ0 :
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which is the frequency response of the relative 
displacement δ(t) of the seismic mass m with 
respect to the transducer case  !

it can be seen on the curves that for every 
damping factor ζ , the usable frequency range is 
for  ω >> ωn where the gain is  δ0 /U0 ≈ 1  and the 
phase delay is   ≈ - 180° … in phase opposition

these conditions together imply that when the 
machine oscillation u(t) is at its maximum point 
U0 the relative displacement δ(t) of the seismic 
mass m is at its minimum point – δ0 …



VIBRATION measurement techniques …

This means the seismic mass m actually «stopped moving» with respect to the absolute reference frame: 
in these conditions, the seismic mass m realizes the fixed reference point for vibration measurements  !! 

Operative considerations:

• To make the condition  ω >> ωn really usable, we need to design a transducer with a very low
which implies  k → very small and  m → very big !

• It is quite hard to simultaneously realize these two conditions ( a very soft spring that bears a big mass !! )

• Moreover, a big seismic mass m firmly applied on the machine mass M causes a «change of the vibration 
modes» and, therefore, induces an insertion error ! 

Few transducers realize the conditions of above : the vibrometer and the seismograph …

In practice, it would be much better to make measurements with a  transducer made with a «small mass m» and 
a «high stiffness k»

This implies a high natural frequency and making measurement at frequencies ω << ωn
m
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ACCELERATION measurement techniques …

Because the gain  δ0 /U0 is quite low for ω << ωn we can not 
directly measure the displacement u(t) in these conditions and 
we have to change the measurand at the transducer input ! 

This implies to change transducer type … 

In fact, being for the amplitudes it results : 

which substituted in the frequency response of the vibrometer results :
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We need to employ a sensor made with the same constitutive elements 
of the vibrometer (m; c; k), but measuring the drag acceleration  𝑢 𝑡

Such a transducer is the accelerometer which has a frequency response :
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ACCELERATION measurement techniques …

The usable frequency range is now at the 
left of the resonance frequency ωn !

To extend the frequency band we have to 
increase ωn however, this implies a decrease

of the gain or the sensor sensitivity !

If we wish to get the displacements u(t) with 
such a sensor, we have to proceed with a 
double integration of the accelerometer 
signal …
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Piezoelectric accelerometers are still the best acceleration 
transducers available on the market, followed by capacitive 
and semiconductor accelerometers …



ACCELERATION measurement techniques …



ACCELERATION measurement techniques …

Although the most common piezoelectric crystal
is quartz, to realize piezoelectric transducers,
titanates of barium (BaTiO3) are generally used, 
or the so-called PZT (from Lead - Zirconium -
Titanium, solid solutions of PbZrO3 and PbTiO3)



ACCELERATION measurement techniques …

Piezoelectric quartz crystallizes in the hexagonal 
system. A slice is cut and extracted from the 
crystal such as in the figure

When applying a force F parallel to the y axis, a 
charge ±Q appears on the x faces

The charge stays as long as force is applied on 
the y faces: 
kij are the piezoelectric constants

Because of the form they are cut, piezoelectric 
crystals can be considered as capacitors with a 
capacity : 
The charge then is :  and the 
graduation curve is :
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ACCELERATION measurement techniques …

m is the seismic mass that during 
vibration presses on the piezoelectric 
crystal with the inertial forces 

Note that m is mechanically pre-charged
to the crystal so to output a signal also 
for negative inertial forces …
c and k are the crystal internal damping
and stiffness …

ymF 

Piezoelectric transducers, unfortunately, have 
a very high output impedance (109 Ω) which 
makes them very poor signal generators. 
To actually read the signal proportional to the 
acceleration      we have to employ special 
amplifiers, with very high input impedance 
(1012 Ω): the charge amplifiers  !
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ACCELERATION measurement techniques …

Many elements play a role in this delicate transducer–amplifier coupling : 

Cq = piezoelectric quartz capacity Rq = piezoelectric quartz output resistance
Cc = leads coupling capacity Rc = leads resistance
Ca = amplifier input capacity Ra = amplifier input resistance

We have all passive elements in parallel : 
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It  discharges exponentially,  like a 1° order electrical system :

Therefore, charge amplifiers are made with FET input stage inverting AO and a feedback capacitor : 
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ACCELERATION measurement techniques …

Note that the graduation curve was derived

without taking into account that quartz is still an elastic 
element (with a very high Young's modulus E) and that 
the charge Q becomes available on the faces of the 
crystal due to an internal electrical asymmetry, caused by 
the very small deformation ε of the crystal. 
The deformation ε in turn is caused by the inertia forces 
of the seismic mass m which acts during vibration

0

ij

r

dk m
V y

S 
 

l

l
SEkESkSkFkQ ijijijij


 

q

ij
y

l

SEk
Q 

On the node A in the figure above, we have: 
fq ii 

qq yK
dt

dQ
i  being Kt

l

SEkij
 cos

of
o

ff VC
dt

dV
Ci  therefore: 

ofq VCyK  



ACCELERATION measurement techniques …

The graduation curve of the integrated system of the piezoelectric accelerometer and the charge amplifier finally is:
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At any rate, piezoelectric accelerometers have a 
determined time constant and therefore are NOT 
suited to measure a constant acceleration (ω = 0) !

Piezoelectric accelerometers are factory calibrated 
one by one !

Manufacturer provide the user with the transducer 
sensitivity in [pC/ms-2] and the frequency response 
chart


